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Comparison of Finite Rate Chemistry and Flamelet/
Progress-Variable Models: Sandia Flames and the Effect of
Differential Diffusion
Suo Yang *, Xingjian Wang**, Wenting Sun, and Vigor Yang

School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, USA

ABSTRACT
In this study, large eddy simulations (LES) are conducted using both
a finite-rate chemistry (FRC) model and a flamelet/progress-variable
(FPV) model for a series of piloted partially premixed methane/air
flames of increasing turbulence intensity (Sandia Flames D, E, and F).
From Flame D to E to F, as flow velocity and strain rate increase, the
flame is either pushed downstream and extended radially or wea-
kened by enhanced local extinction. The two combustion models
produce different spatial distributions of both time-averaged quan-
tities and instantaneous flame field. The FPV model provides an
overall better prediction of the time-averaged axial and radial profiles
of Flame D, but a significantly worse prediction of Flame F, primarily
because the FPV model significantly over predicts local extinction. In
terms of the conditional statistics, in which the effects of spatial
distribution of mixture fraction and subgrid-scale (SGS) modeling
are largely “removed,” the FRC model provides better predictions
than the FPV model for all quantities at most locations and mixture
fractions in all three flames. The effect of differential diffusion on the
prediction of a species depends on the molecular diffusivity of that
species; the effect is typically smaller than the difference between the
FRC and FPV models.
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Introduction

Because of the rising demand for combustion energy and its severe environmental
impacts, high-fidelity simulation of turbulent combustion has become increasingly impor-
tant. Over the past three decades, large eddy simulation (LES) has drawn significant
attention, and its prediction capability has progressively improved. Numerous LES turbu-
lent combustion models have been developed, and they can be classified into two major
categories: finite rate chemistry (FRC) models and reduced-order manifold models.
Examples of FRC models are the laminar chemistry model (Gonzalez et al. 2017; Potturi
and Edwards 2013), the perfectly-stirred reactor (PSR) model (Lysenko, Ertesvåg, Rian
2014), the partially-stirred reactor (PaSR) model (Marzouk and Huckaby 2010), the linear-
eddy model (LEM) (Menon and Kerstein 2011), the Monte Carlo method for Lagrangian
filtered probability density function (FDF) transport equations (Pope 1985), and the
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thickened flame model (TFM) (Legier, Poinsot, Veynante 2000). Examples of the reduced-
order manifold models are the steady laminar flamelet model (Peters 1984), the
Lagrangian flamelet model (Pitsch and Steiner 2000a, 2000b), and the flamelet/progress-
variable (FPV) model (Pierce and Moin 2004).

An advanced reduced-order manifold model, the FPV model (Huo and Yang 2017;
Pierce and Moin 2004; Yang, Lew, Mueller 2019a) was developed to account for a low level
of local extinction, re-ignition, and unsteady mixing (Pierce and Moin 2004). It incorpo-
rates a transport equation to track a progress variable, but it cannot handle multiple-feed
streams without a third parameter or more. Using three or more parameters makes the
look-up library very difficult to handle, due to the excessive computer memory require-
ments and the enormous time required to build up the library. Furthermore, a higher-
dimensional look-up library requires more efficient data retrieval processes, and a coarser
table grid often introduces larger interpolation errors.

To overcome the above limitations, detailed FRC models are preferred. Previous studies
have shown that the accuracy of the simple laminar chemistry model is similar to that of
other classical Eulerian subgrid-scale (SGS) closure models (Gonzalez et al. 2017; Potturi
and Edwards 2013), so the laminar chemistry model is used in the present study.
Compared to reduced-order manifold models, detailed FRC models are computationally
intensive for LES application because of the large number of species transport equations
and their associated numerical stiffness. To reduce computational requirements, conven-
tional FRC-LES often uses over-simplified chemical kinetic models, but this induces
significant deviations, especially for low temperature chemistry (Ju et al. 2016; Rousso
et al. 2017; Zhang et al. 2017, Chen et al. 2019). To tackle this challenge, a regime-
independent framework of a point-implicit stiff ODE solver (ODEPIM) (Bussing and
Murman 1988; Katta and Roquemore 2008) and a correlated dynamic adaptive chemistry
package (CoDAC) (Sun et al. 2015) were developed. CoDAC generates locally reduced
chemical models for different spatial locations and time steps, and only calculates the
reaction rates of selected species and reactions. This framework (Yang 2017) has been
comprehensively evaluated in simulations of laminar plasma-assisted combustion (Yang
et al. 2016a, 2017a, 2015, 2016b), and in direct numerical simulations (DNS) of turbulent
premixed (Yang et al. 2017b) and non-premixed (Yang et al. 2017c) flames. The frame-
work accelerates the chemistry solver significantly (20–50 times), and this allows FRC LES
using chemical kinetic models of reasonable size in a computationally efficient manner.

In our previous study (Yang et al. 2019b), for the first time, this efficient framework for
FRC was incorporated into a preconditioning scheme (Hsieh and Yang 1997; Meng and
Yang 2003; Zong and Yang 2007) to enable an Eulerian LES in a fully compressible
computational fluid dynamics (CFD) solver, whose range of applicability is much broader
than low Mach solvers. This framework was applied to a low Mach number piloted
turbulent partially premixed flame (Sandia Flame D). In the present study, the same
framework is used to investigate Flames E and F, which have higher bulk velocity and
shear strain rate (thus turbulent intensity) than Flame D, and therefore more local
extinction and unstable events. Specifically, the Reynolds numbers of Flames D, E, and
F are 22400, 33600, and 44800, respectively. The results for Flames E and F are compared
to those of Flame D from the previous study using the same model.

Compared to Flame D, there have been significantly fewer studies of Flames E and F, and
most of them have employed low Mach number CFD solvers. The FPV reduced-order
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manifold model has been employed for Flames D and E (Ihme and Pitsch 2008). Among the
FRC models, most of the reported studies employed transported FDF models, including both
Lagrangian (Flame D and E) (Raman and Pitsch 2007) and Eulerian (Flames D-F) (Jones and
Prasad 2010) FDF models.

To the best of our knowledge, direct comparisons between reduced-order manifold and
FRC models have never been made for Flames E and F. Here, therefore, the results from the
laminar chemistry FRC model are systematically compared to results from both the FPV
model and the experimental data for all Sandia flames. For self-consistency, both combustion
models are coupled with a fully compressible CFD solver using a preconditioning scheme
(Hsieh and Yang 1997; Meng and Yang 2003; Zong and Yang 2007), whose range of
applicability is much broader than low Mach number solvers. In addition, the effect of
differential diffusion is evaluated to differentiate it from the effect of chemistry modeling.

Theoretical formulation

The Favre-averaged fully compressible Navier-Stokes equations of mass, momentum, and
energy are presented as follows:

@�ρ

@t
þ @�ρ~ui

@xi
¼ 0 (1)

@�ρ~ui
@t

þ @ �ρ~ui~uj þ �pδij
� �

@xj
¼

@ ~τij � τsgsij

� �
@xj

(2)

@�ρ~E
@t

þ @ �ρ~Eþ �p
� �

~ui
� �

@xi
¼ @

@xi
�qi þ ~uj~τij � Qsgs

i �Hsgs
i þ σsgsi

� �
(3)

In Eq. (2), the pressure gradient term @�pδij
@xj

is proportional to 1=M2. In low Mach number

flows, this term becomes singular and introduces large numerical challenges, and this
requires an extremely small time step and makes the simulation computationally infea-
sible. A viable solution is to employ a preconditioning scheme (Hsieh and Yang 1997;
Meng and Yang 2003; Zong and Yang 2007) for a fully compressible solver, whose range
of applicability is much broader than low Mach number solvers. The unclosed terms in
Eqs. (1–4) are the SGS terms, which are closed by algebraic Smagorinsky type models
(Moin et al. 1991; Smagorinsky 1963; Unnikrishnan et al. 2017).

In this study, two combustion models are considered: an FPV model and an FRC
model. The following sections describe in detail the formulation of both models.

Finite-Rate Chemistry (FRC) model

FRC models are preferred to handle flows that involve variable molecular Lewis numbers
for differential diffusion, extinction, ignition, emissions, and multi-mode combustion. In
this study, the detailed species transport equations are tracked in an Eulerian formulation.
The Favre-averaged fully compressible equation of the k-th species is presented as follows:
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@�ρ~Yk

@t
þ @ �ρ~uj~Yk

� �
@xj

¼ @

@xj
�ρ~Uk;j~Yk �Φsgs

k;j

� �
þ _ωk ¼ @

@xj
�ρDk;eff

@~Yk

@xj

� �
þ _ωk (4)

where the effective diffusivity of the k-th species Dk;eff ¼ Dk þ Dk;t ¼ Dk þ μt
�ρPrtLet

, Dk is the

molecular diffusivity of the k-th species, Dk;t is the SGS turbulent diffusivity of the k-th
species, and μt is the SGS turbulent viscosity calculated from the algebraic Smagorinsky-
type model. SGS turbulent Prandtl number Prt ¼ 0:7 and SGS turbulent Lewis number

Let ¼ 1 are used in this study. The unclosed term _ωk on the right-hand side in Eq. (4) is

the filtered species net mass production rate. For simplicity, _ωk is modeled by the laminar
chemistry model, because past investigations have shown that its accuracy is similar to
that of other, more complex, classical Eulerian SGS closure models (Gonzalez et al. 2017;
Potturi and Edwards 2013). The chemical source terms introduce a large and stiff ODE
system, rendering the detailed FRC model computationally prohibitive. In the implemen-
tation, the ODEPIM (Bussing and Murman 1988; Katta and Roquemore 2008) and
CoDAC (Sun et al. 2015; Yang et al. 2017b, 2017c, 2016b) techniques are utilized to
accelerate the calculation.

Flamelet/Progress Variable (FPV) model

In the FPV model (Huo and Yang 2017; Pierce and Moin 2004), instead of solving the
transport equations of filtered chemical species, we solve the transport equations of the
filtered mixture fraction and progress variable:

@�ρ~Z
@t

þ @ �ρ~ui~Z
� �
@xi

¼ @

@xi
�ρDeff

@~Z
@xi

� �
(5)

@�ρ~C
@t

þ @ �ρ~ui~C
� �
@xi

¼ @

@xi
�ρDeff

@~C
@xi

� �
þ _ωC (6)

Without solving the transport equations of filtered chemical species, the FPV model

assumes a unity Lewis number for the effective diffusivity Deff i:e:; Deff ¼ λeff
�ρ~cp

� �
, and the

effective thermal conductivity λeff ¼ λþ ~cpμt
Prt

, where λ is the molecular thermal conductiv-

ity. Prt ¼ 0:7 is used in this study. The model therefore cannot directly capture the
differential diffusion effects, although it can partially capture the effects by tabulation
using flamelet solutions with differential diffusion. In regions with low turbulence inten-
sity, turbulent diffusivity becomes negligible, and differential molecular diffusion effects
could be important, leading to relatively substantial errors of the FPV model. On the other
hand, in regions with high turbulence intensity, turbulent diffusion can be very important
and even dominant, so that the effective differential diffusion approach used in the FRC
model is not necessarily better than the unity effective Lewis number approach in the FPV
model to represent the transport process.
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In the present study, the Bilger mixture fraction Z (Bilger 1993) is defined as:

Z ¼ 0:5� YH�YH;coflow

WH
þ 2� YC�YC;coflow

WC

0:5� YH;jet�YH;coflow

WH
þ 2� YC;jet�YC;coflow

WC

(7)

where the ‘coflow’ subscript represents the co-flow feed, the ‘jet’ subscript represents the
main fuel jet feed, and the other quantities are the measured samples. The progress
variable C is simply defined as:

C ¼ YCO þ YCO2 þ YH2 þ YH2O (8)

During the simulation, the filtered species mass fractions are retrieved from the library as
functions of filtered mixture fraction, its variance, and the filtered progress variable. This
could cover part of the unstable branch of the S-shaped curve of ignition and extinction,
and hence could partially account for the unsteady effects.

Results and discussion

The Sandia flames (Barlow and Frank 1998) have been fully characterized through a series
of detailed experiments on a piloted turbulent partially premixed methane/air flame
configuration. From Flame D to Flame F, the bulk velocities of both fuel jet and piloted
flame are increased (see Table 1). Full experimental data sets are available, and the flames
have been simulated many times for validation purposes (Jones and Prasad 2010; Pitsch
and Steiner 2000a; Raman and Pitsch 2007). In this study, Flames D, E, and F are
simulated using both the FRC and FPV models. To the best of our knowledge, this
work is the first attempt to employ a fully compressible solver with an Eulerian FRC
model for Flames E and F. The detailed flow conditions are presented in Table 1. Unlike
previous studies using low Mach number CFD solvers, the present work employs a fully
compressible CFD solver with a preconditioning scheme, whose range of applicability is
much broader than those of low Mach number solvers.

The computational domain is from 6 mm upstream of the inlet to 600 mm downstream
of the inlet, 36 mm in the radial direction at inlet, and 150 mm in the radial direction at
the end of the domain. We use 310 grid points in the axial direction, 130 points in the
radial direction, and 64 points in the azimuthal direction. Grid clustering is employed to
resolve the high gradient regions near both the inner and outer shear layers. The total
number of grid points is approximately 2.6 million. The experimentally specified velocity
profile and turbulence intensity are enforced at the inlet, while a fixed back pressure is set

Table 1. Flow conditions of Sandia Flames D, E, and F (Barlow and Frank 1998).

Composition
Inner diameter

(mm)
Outer diameter

(mm)
Bulk velocity

(m/s)
Temperature

(K)

Fuel jet 25% CH4/75% air (by volume) 7.2 7.7 D: 49.6
E: 74.4
F: 99.2

294

Piloted flame Equilibrium: CH4/air mixture
(ϕ ¼ 0:77)

7.7 18.2 D: 11.4
E: 17.1
F: 22.8

1880

Coflow Air 18.9 N/A 0.9 291
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at the outlet. A methane chemical mechanism with 20 species and 84 reactions (Yang et al.
2019b) is used in both combustion models. The chemical mechanism was reduced from
GRI-Mech 3.0 (Smith et al.) using the Global Pathway Selection (GPS) algorithm (Gao,
Yang, Sun 2016) and verified in terms of homogeneous ignition delays, extinction curves
in the perfectly-stirred reactor (PSR), and laminar flame speeds. The time-averaged
statistics are calculated after three flow-through-times, to allow the flow field to reach
its statistically stationary state.

Spatial distribution of reactivity

Figure 1 shows instantaneous spatial distributions of numbers of active species and
reactions for the three flames, generated from the CoDAC method (threshold = 2%).
CoDAC generates locally reduced chemical kinetics for each spatial location and time step,
and each locally reduced chemical mechanism has small numbers of active/remaining
species and reactions (often much smaller than the full mechanism) to represent the
reactivity of the location and time step. These numbers are good indicators for the level of
reactivity. In the zone outside the expanding jet brush, only 2 species (preselected seed
species: fuel and oxidizer) and zero reactions are selected, because no chemical reactions
occur there. In the highly distributed turbulent partially premixed flame zone, most of the
species and reactions in the full mechanism are selected. Note that from Flame D to E to F,
due to increased velocity and enhanced mixing, the flame zone is enlarged radially and
extended further downstream. There is a large buffer zone (green) between the zone
outside the expanding jet brush and the highly distributed turbulent partially premixed

Figure 1. Instantaneous spatial distributions of numbers of active species (left) and reactions (right),
generated from the CoDAC method with the FRC-LES approach for Flames D (upper), E (middle), and
F (lower).
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flame zone, with intermediate numbers of selected species and reactions. Similar to the
flame zone with almost full mechanism, from Flame D to E to F, this buffer zone is also
enlarged radially and extended axially downstream. The reduction in numbers of species
and reactions at most spatial locations is responsible for the acceleration of the chemistry
calculation using the CoDAC method.

Figure 2 shows the time-averaged spatial distributions of temperature, calculated by
both FRC and FPV approaches. Intense combustion regions can be observed in two of the
three flames and in Flame F as predicted by FRC at approximately x/d = 40, where almost
complete mixing and combustion are achieved to reach peak temperatures. Flame F as
predicted by FPV is almost completely extinguished at that location. Because of the
increasingly high bulk velocity in Flames E and F, the flame is either pushed further
downstream (from E to F, predicted by FRC) or weakened due to the enhanced local
extinction (from D to E to F, predicted by FPV). Overall, the time-averaged spatial
distributions predicted by the two approaches are different, and the difference is between
the two approaches increases significantly from Flame D to E to F.

Unlike the time-averaged temperature distributions, the instantaneous temperature
distributions of the two models are quite different, as shown in Figure 3. The flames all
have very dynamic jet flow and flame structures, and some level of local extinction. Near
the inlet, the piloted flame shows enhanced combustion stability and minimized local
extinction. In the downstream locations, the co-flow and fuel jet interact with each other
in the high temperature shear layer, which results in more local extinction. The topological
differences between the two models are more apparent than in the time-averaged
counterpart.

For Flame E, FRC-LES predicts no flame near the axial center line from the inlet to
x/d = 60, but FPV predicts intense combustion regions across the center line, which is
consistent with the time-averaged distributions shown in Figure 2. Near the inlet,
FRC-LES predicts that the piloted flame can survive further downstream, to wrap
around the shear-layer-generated vortices, but the FPV-LES predicts that the piloted
flame is quenched much further upstream, before reaching the vortices, which agrees
with previous FPV studies (Ihme and Pitsch 2008). This can be explained by low
turbulence intensity near the inlet, where the flow field is close to laminar. This fact

Figure 2. Time-averaged temperature distributions for Flames D (upper), E (middle), and F (lower),
using FRC-LES (left) and FPV-LES (right).
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indicates that near the inlet (Han, Raman, Chen 2016; Pitsch and Steiner 2000a) the
effect of differential molecular diffusion is important, but it cannot be tracked by the
FPV model if the unity Lewis number is assumed.

For Flame F, FRC-LES predicts that the flame is pushed further downstream because
the bulk velocity is higher than in Flame E, but FPV predicts more significant local
extinction and finer structures in the same downstream region, which agrees with the
time-averaged distribution in Figure 2. This means that the local scalar dissipation rates in
that region are sufficiently high to go beyond the extinction point on the S-curve, but the
FRC-LES prediction can deviate from the S-curve to obtain lower local scalar dissipation
rates (supported by the data but not shown here), such that the flame is still not
extinguished.

In the downstream locations of both Flames E and F, the FPV model predicts relatively
smaller high temperature regions than the FRC model, and a completely different topol-
ogy (more local extinction and finer structures). Unlike for Flame D (Yang et al. 2019b),
there are large deviations between the two models in both the upstream and downstream
regions. It is not obvious which model is closer to the experiment, because a quantitative
experimental measurement of instantaneous temperature distribution is not available.
Considering the relevance to unsteady/un-stationary phenomena such as ignition, extinc-
tion/lean blow-out (Esclapez et al. 2017), and combustion instability (Li et al. 2017), the
above differences between the two models are important issues.

To better understand these differences, detailed spatial distributions of species are
presented. Figure 4 compares the instantaneous distributions of OH radical predicted by
the two models for Flames E and F. The OH profiles from both models are extended
further downstream in Flame F due to the higher bulk velocity. For Flame E, in the
upstream locations (x/d < 20), the FRC model predicts significantly higher OH concen-
tration than in its FPV counterpart, and this agrees with the early quenching of the piloted
flame predicted by the FPV model in Figure 3. In the downstream locations, the FPV

Figure 3. Instantaneous temperature distribution. From left to right: Flame E from FRC-LES and from
FPV-LES at the same time instance, Flame F from FRC-LES and from FPV-LES at the same time instance.
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model predicts much broader regions with high OH concentration for both flames. In the
same locations, however, the FPV model predicts smaller high temperature regions and
more local extinction, especially for Flame F, as shown in Figure 3. This seems to
contradict the general understanding that higher radical levels indicate stronger heat
release and higher temperature.

To explain the aforementioned observation, the instantaneous distributions of CO
mass fraction from the two models are compared in Figure 5. As for OH concentration
(Figure 4), the CO profiles from both models are extended further downstream in Flame
F than in Flame E, due to the increasing bulk velocity. For Flame E, the FPV model

Figure 4. Instantaneous YOH distribution for Flames E and F with different combustion models.

Figure 5. Instantaneous YCO distribution. From left to right: Flame E from FRC-LES and from FPV-LES at
the same time instance, Flame F from FRC-LES from FPV-LES at the same time instance.
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predicts lower CO concentration than its FRC counterpart throughout the flow field.
Because CO+OH = CO2 + H is a key heat release reaction and a rate-controlling step,
the FPV model predicts significantly smaller high temperature regions (more local
extinction and finer structures) and this also partially explains its over-prediction of
OH in the downstream locations. The FPV model also predicts a lower concentration of
combustion products (CO2 and H2O) in the downstream region (not shown here, for
brevity), which further confirms the above conclusion. In contrast, for Flame F,
although the FRC model still predicts higher peak CO concentration than its FPV
counterpart in the downstream locations, the FPV model predicts a broader but broken
region of intermediate CO concentration. Considering the intense local extinction
shown in Figure 3, for the Flame F predicted by FPV-LES, it is apparent that the strong
strain rate first distributes the flame, then extinguishes it locally to create finer struc-
tures, but the CO concentration takes a much longer time to decay due to the lack of
consumption.

On the other hand, the FPV model predicts smaller regions of high CH4 concentration
for both flames (Figure 6). For this reason, a good portion of the carbon must be carried
by intermediate species between CH4 and CO, primarily CH2O and HCO (Zhao et al.
2017). The conversion from HCO to CO is rapid, and thus only a very low HCO
concentration can be accumulated (up to 10�5 by mass fraction). In the database of the
FPV table consisting of one-dimensional steady counterflow flamelet solutions, the flame
temperature is higher than that under real unsteady conditions in turbulent combustion,
so CH2O+OH = HCO+H2O tends to dominate the conversion from CH2O to HCO. In
contrast, in Figure 3, many lower temperature (approximately 1200 K) ‘holes’ are visible in
the intense combustion regions; in these regions, CH2O+O2 = HCO+HO2 should dom-
inate the conversion from CH2O to HCO during the unsteady evolution. However, the
steady FPV table cannot capture the unsteady evolution history of the flame and may

Figure 6. Instantaneous YCH4 distribution. From left to right: Flame E from FRC-LES and from FPV-LES at
the same time instance, Flame F from FRC-LES and from FPV-LES at the same time instance.
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overlook this important reaction. Therefore, in those holes, the carbon element in FPV-
LES is partially stuck at CH2O and will tend not to further convert into HCO and CO, as
evidenced by CH2O mass fraction accumulated up to the 10�3 level.

The discrepancies between the two models could come from the different transport
models (by default: differential diffusion model for FRC-LES and unity Lewis number
model for FPV-LES), the FPV library, the unsteady evolution of filtered mixture fraction
and progress variable in the FPV model, or some combination of these factors. For this
reason, in the following sections, predictions from the two models will be compared with
the experimental data, based on: (1) time-averaged axial and radial distributions of
temperature and mixture fraction; and (2) time-averaged conditional statistics in the
mixture fraction space.

In addition, the effective Lewis numbers of species will approach unity under high
turbulence intensity (Wang 2016), because the dominance of turbulent diffusivity over
molecular diffusivity is strong. On the other hand, since the state of the art of SGS
modeling contains significant uncertainties (typically 100% or larger), SGS turbulent
diffusivity Dk;t cannot be modeled very well in the FRC model (Dk;t ¼ μt

�ρPrtLet
in this

study). For this reason, FRC-LES using the unity effective Lewis number assumption

i:e:; Dk;eff ¼ Deff ¼ λeff
�ρ~cp

�
with λeff ¼ λþ ~cpμt

Prt

�
is also conducted to evaluate the effect of

transport model choice for all three flames, such that FRC and FPV use the same transport
model. This should make clear whether, and if so how much of, the discrepancy between
the results from FRC and FPV is due to differential diffusion.

Axial profiles

Figure 7 shows the axial distributions of the time-averaged statistics for temperature and
mixture fraction. The mixture fraction profile becomes steeper from Flame D to E to F due to
the enhanced turbulence intensity, but the temperature profile is not pushed downstream
significantly. In addition, the peak temperatures are not at the stoichiometric mixture fraction
of 0.35 for all three flames. This means that the thermochemical states deviate from the steady
flamelet solutions due to the strong local dissipation rates. Both models under-predict the
peak values in the intense combustion region (x/d = 40 ~ 60), but the FRV model predicts
more accurate peak temperatures than the FRC models do for Flames D and E (which are
closer to the “flamelet” regime), and the FRC models predict a more accurate peak tempera-
ture than the FPV model for Flame F (which has higher Mach number). The profile of the
FRC model with unity Lewis number, even though it is a hybrid of the two default models, is
not always located between their profiles. For temperature, the FPV model provides a better
prediction at the upstream locations (x/d < 40), in terms of both qualitative trends and
quantitative values, while the FRC model is better at the downstream locations (x/d > 50).
For mixture fraction, the FPV model provides a better prediction at most locations for Flame
D (which is closer to the “flamelet” regime). For Flame F (which has higher Mach number),
the FRC models are significantly closer to the experimental data than the FPV model, which
erroneously predicts an overly rapid decay of mixture fraction and complete extinction. The
profile of the FRC model with unity Lewis number is close to the default FRC model for
Flames E and F, but is too high for Flame D.
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Radial profiles

Figure 8 shows the radial distributions of time-averaged temperature at four axial locations. At
most axial locations, the peak temperature gradually decreases from Flame D to E to F due to
the increasing strain rate, except at x/d = 45, which is in the intense combustion region for all
three flames. At the upstream locations (x/d = 7.5 and 15) both models agree well with the
experiment near the centerline, but mismatch the outer region (r/d > 0.6), especially for
Flames E and F. On the contrary, at the downstream locations (x/d = 30 and 45) both models
agree with the experimental data in the outer region (except for the FPV model for Flame F)
but under-predict near the centerline (except for the FPV model for Flame D at x/d = 30). As
in the axial distribution, the FPV model provides slightly better prediction than the FRC
models for Flame D, but significantly worse predictions for Flame F. For most locations in the
three flames, the FRC-LES with two transport models provide very similar predictions.

Figure 9 shows the radial distributions of time-averaged mixture fraction at different
axial locations. The time-averaged mixture fraction near the centerline gradually decreases
along the axial direction, indicating significant entrainment/mixing of the fuel jet with
pilot and coflow. Predictions from both FRC and FPV models are in fairly good agreement
with experimental data (except FPV model for Flame F), and are significantly better than
the temperature predictions. Near the centerline, the FRC models often over-predict the
mean mixture fraction, possibly due to their over-prediction of fuel jet entrainment and
mixing in that region. In contrast, the FPV model always under-predicts the centerline
mixture fraction. As noted with respect to temperature, the FPV model provides a better

Figure 7. Axial profiles of mean temperature (upper) and mixture fraction (lower) of Flames D (left),
E (middle), and F (right), from the experiment, the FRC-LES approach, and the FPV-LES approach. Zst is
the stoichiometric mixture fraction of 0.35, Lei means the differential diffusion model, Le = 1 means the
unity Lewis number model.
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prediction than the FRC models for Flame D, but a worse prediction for Flame F. Far
away from the centerline, the predictions of the two models are relatively closer to each
other. The effect of the transport model is relatively small, and the profile of the FRC
model with unity Lewis number does not always appear between the profiles of the two
default models.

In summary, the FPV model provides slightly better predictions than the FRC models for
Flame D, but significantly worse predictions for Flame F. The relatively poor performance of
the FPV for Flame F is because the FRC models more accurately capture extinction and
ignition. The predictions of FRC-LES using different transport models are often close to
each other, which suggests that the effect of transport modeling is relatively small. In
addition, the profile of the FRC model with unity Lewis number does not always reside
between the profiles of the two default models. Therefore, when the FPV model is slightly
better at predicting spatial distribution than the FRC models (e.g., Flame D), it may be
because of the lack of SGS modeling of chemical source terms in the FRC model.

Conditional statistics

The FPV model predictions differ from those of the FRC models partly due to their
different predictions of the spatial distribution of mixture fraction. To compare other

Figure 8. Radial profiles of time-averaged temperature of Flame D (upper), E (middle), and F (lower),
from the experiment, the FRC-LES approach, and the FPV-LES approach. Lei means the differential
diffusion model, Le = 1 means the unity Lewis number model.
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aspects of the two models, especially the chemical kinetics, we need to partially “remove”
the effects of spatial distribution and SGS modeling by investigating the conditional
statistics in the mixture fraction space. Furthermore, the conditional statistics can also
offer insight into the turbulence/chemistry interactions and illustrate the difference
between the FPV tabulation and FRC.

Figure 10 shows the conditional mean temperature at four axial locations, for which the
experimental data contains 3% systematic uncertainty. From Flame D to E to F, for most
axial locations (x/d = 7.5, 15, and 30), the peak temperature is decreasing due to the higher
strain rate. Results from the FRC models agree better with the experimental data than
their FPV counterparts for all locations and flames and almost all mixture fraction values,
especially for Flames E and F, due to the over-prediction of extinction from FPV. The
predictions of the FRC-LES approach are better in the upstream locations than in the
downstream locations. In the downstream locations (x/d = 30 and 45), both models agree
well with the experimental data on the fuel lean side, but under-predict the mean
temperature on the fuel rich side. The FRC model with unity Lewis number predicts
profiles that are similar to those of the FRC model with differential diffusion, which
confirms that the effective Lewis numbers of species responsible for heat release are close
to unity. Due to the entrainment/mixing of the fuel jet with the pilot and coflow in the
downstream locations, all profiles end up with mixture fraction values significantly smaller

Figure 9. Radial profiles of time-averaged mixture fraction of Flame D (upper), E (middle), and
F (lower), from the experiment, FRC-LES approach, and FPV-LES approach. Lei: differential diffusion
model, Le = 1: unity Lewis number model.
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than unity. Of course, a given location could be lean, stoichiometric, or rich at different
time instances. In that case, the time-averaged data at a single location will include
instantaneous lean, stoichiometric, and rich data, and the trends will partially offset
each other, such that the mean data will show smaller differences than the instantaneous
data (Figures 2 and 3).

Figure 11 shows the conditional mean of YH2O to represent major combustion
products, for which the experimental data contains 4% systematic uncertainty. The
performance of the two models is like their predictions for the time-averaged condi-
tional temperature, which indicates that most of the heat release is closely correlated
with the formation of H2O. From Flame D to E to F, for most axial locations (x/d = 7.5,
15, and 30), the peak YH2O value is decreasing due to the higher strain rate. For all three
flames, the value of YH2O at x/d = 45 is higher than that at x/d = 15, and this is probably
attributable to re-ignition. Furthermore, the partially premixed burning (the triple-
flame structure) at x/d = 45 creates a plateau region in the YH2O profile, which does not
exist in pure diffusion flames. Results from the FRC model agree better than the FPV
model with the experimental data for all the locations and flames, especially at the
upstream locations (x/d = 7.5 and 15). In some upstream locations (x/d = 7.5 and 15 of
Flame D and F), the FRC model agrees very well with the experimental data for almost

Figure 10. Conditional average of temperature for Flames D (upper), E (middle), and F (lower), from the
experiment, FRC-LES approach, and FPV-LES approach. Lei: differential diffusion model, Le = 1: unity
Lewis number model.
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all mixture fraction values. Like the temperature results, both models can provide good
prediction on the fuel-lean side. Near the stoichiometric mixture fraction of Z ¼ 0:35
and on the rich side, however, the FPV model predicts significantly smaller H2O
concentration than the FRC model. As in the temperature profiles, for Flame F, the
FRC model with unity Lewis number predicts similar profiles as the FRC model with
differential diffusion; the differences are slightly larger than for temperature, because
the molecular diffusivity of H2O is approximately 0.8.

Figure 12 shows the conditional mean of YOH, representing radical species, for which the
experimental data contain 10% systematic uncertainty. At upstream locations (x/d = 7.5 and
15), the results from the default FRC model agree with the experimental data very well
(except for x/d = 15 of Flame E), while the FPVmodel predicts significantly lower peak values.
From Flames D to E to F, the peak value decreases. At the downstream locations (x/d = 30
and 45), both default models significantly under-predict the peak values for all the flames,
and the peak values of the three flames are similar, but the FRC model with unity Lewis
number captures the peak values of Flame D very well. On both the lean and rich sides of the
flames, the predictions from the FRC models agree better with the experimental data than
does the FPV counterpart. The differences between the unity Lewis number and differential
diffusion models are greater than in the H2O profiles, because the molecular diffusivity of OH
is approximately 0.7, which is further from unity.

Figure 11. Conditional average of YH2O of Flames D (upper), E (middle), and F (lower), from the
experiment, FRC-LES approach, and FPV-LES approach. Lei: differential diffusion model, Le = 1: unity
Lewis number model.
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Figure 13 shows the conditional mean of YCO, representing intermediate species, for which
the experiment data have 10% ~ 20% systematic uncertainty. From FlameD to E to F, the peak
CO concentration decreases, except at the furthest downstream location of x/d = 45. This
observation agrees with similar observations in temperature, H2O, and OH. For all locations
and flames, the very lean and very rich regions contain relatively smaller errors, and both
default models under-predict the peak values at the downstream locations (x/d = 30 and 45).
This partially explains the under-prediction of peak temperature (seen in Figure 10) in the
same locations. But the default FRC model results have peak values significantly closer to the
experimental data than their FPV counterparts, especially at the upstream locations (x/d = 7.5
and 15) of Flames D and F.

For the downstream locations (x/d = 30 and 45) of Flame D, the FRC model with unity
Lewis number predicts peak values significantly closer to the experimental data than either
of the default models. In contrast, some previous FRC (Jones and Prasad 2010) and FPV
(Ihme and Pitsch 2008) studies, both of which employed low Mach number solvers, over-
predicted the peak values. In particular, one previous FRC study (Jones and Prasad 2010)
employed a chemical mechanism (19 species, reduced from GRI-Mech 3.0) similar to the
one used in the present study, so the opposite trend in conditional mean of YCO is
probably not due to different chemical mechanisms, but rather to the different choice of

Figure 12. Conditional average of YOH of Flame D (upper), E (middle), and F (lower), from the
experiment, FRC-LES approach, and FPV-LES approach. Lei: differential diffusion model, Le = 1: unity
Lewis number model.

COMBUSTION SCIENCE AND TECHNOLOGY 17



CFD solvers. At the furthest upstream location (x/d = 7.5), the influence of the piloted
flame dominates, such that the peak value of YCO cannot directly represent the peak value
of temperature.

The FRC models predict better peak values and lean profiles for temperature, H2O, and
OH than their FPV counterparts at all locations of all flames. Near Z ¼ 0:5, the FPV
model predicts significantly smaller CO concentration than the FRC model, which is
consistent with the limiting effect of CO for the FPV prediction observed in snapshots
(Figure 5). On the very fuel-rich side, the CO concentration predicted by the FPV model is
always far lower than that from the FRC model.

Figure 14 shows the conditional mean of YCH4 . All models and the experiment show
monotonically increasing profiles, which follows the definition of mixture fraction. No
significant difference is observed among the three flames, except that the profiles for Flame
F are shorter than for Flames D and E at the downstream locations (x/d = 30 and 45). At
most locations (x/d = 7.5, 15, and 30), the predictions from the two FRC models are close
to each other and agree well with the experimental data, but the FPV model over-predicts
the profiles. At x/d = 45, both models significantly over-predict the YCH4 level on the fuel
rich side. The two FRC transport models predict similar CH4 profiles, because the
molecular diffusivity of CH4 is also approximately unity.

Figure 13. Conditional average of YCO of Flame D (upper), E (middle), and F (lower), from the
experiment, FRC-LES approach, and FPV-LES approach. Lei: differential diffusion model, Le = 1: unity
Lewis number model.
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Conclusions and recommendations for future work

In this study, large eddy simulations (LES) are conducted using the finite-rate chemistry
(FRC) and flamelet/progress-variable (FPV) models for a series of piloted partially pre-
mixed methane/air flames with high turbulence intensity and low levels of local extinction
and re-ignition, Sandia Flames D, E, and F. From Flame D to E to F, due to the increase in
flow velocity and strain rate, the flame zone is either pushed downstream and extended
radially or weakened by enhanced local extinction. The two models produce different
spatial distributions of both time-averaged quantities and instantaneous flame field. In
particular, the FPV model incorrectly predicts intense local extinction for Flame E and
complete extinction for Flame F, while the FRC model provides reasonably good agree-
ment with the experimental data. The time-averaged axial and radial profiles of all the
three flames show that the FPV model provides an overall better prediction than the FRC
model for Flame D, but a significantly worse prediction for Flame F, primarily due to the
over-prediction of local extinction by the FPV model. The FRC model with unity Lewis
number predicts spatial distributions similar to those of the FRC model with differential
diffusion, but its profiles are not always located between those of the two default FRC and
FPV models. The effect of differential diffusion is relatively small with respect to the
discrepancy between the FRC and FPV models, and the SGS modeling of chemical source
term might play a more important role. In the conditional statistics on the three flames, in

Figure 14. Conditional average of YCH4 of Flame D (upper), E (middle), and F (lower), from the
experiment, FRC-LES approach, and FPV-LES approach. Lei: differential diffusion model, Le = 1: unity
Lewis number model.
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which the effects of spatial distribution of mixture fraction and subgrid-scale (SGS)
modeling are partially “removed,” the FRC models provide better predictions than the
FPV model for all quantities at most locations and mixture fractions. In the mixture
fraction space, the difference in species concentration predictions between the two trans-
port models depends on how close the molecular diffusivity of a given species is to unity,
and neither of the two transport models is always better. The present results suggest that
to properly apply FRC in LES, better transport models covering a broad range of
turbulence intensity will be required. In such models, the dependence on Reynolds
number (Wang 2016) and the strain-sensitivity of chemical species (Lew, Yang, Mueller
2017) should be considered. This topic should be addressed in future work.

Nomenclature

~C Favre-filtered progress variable
~cp Favre-filtered heat capacity at constant pressure (J � kg�1 � K�1)
d jet diameter (m)
Dk molecular diffusivity of the k-th species (m2=s)
Dk;eff effective diffusivity of the k-th species (m2=s)
Deff effective diffusivity of mixture fraction and progress variable (m2=s)
Dk;t sub-grid scale turbulent diffusivity of the k-th species (m2=s)
~E Favre-filtered total energy (J � kg�1)
Hsgs

i sub-grid scale energy flux in the ith direction (J �m�2 � s�1)
~kbi Favre-filtered backward reaction rate constant of the ith reaction
~kfi Favre-filtered forward reaction rate constant of the ith reaction
Lk number of reactions involving the kth species
Let sub-grid scale turbulent Lewis number
M Mach number
Ni number of species involved in the ith reaction
�p filtered pressure (Pa)
�pg filtered gauge pressure (Pa)
Prt sub-grid scale turbulent Prandtl number
Qsgs

i sub-grid scale heat flux in the ith direction (J �m�2 � s�1)
�qi filtered heat flux in the ith direction (J �m�2 � s�1)
r spatial coordinate in the radial direction (m)
~T Favre-filtered temperature (K)
t physical time (s)
~Uk;j Favre-filtered diffusion velocity component of kth species in jth direction (m � s�1)
~u Favre-filtered velocity component in the 1st direction (m � s�1)
~ui Favre-filtered velocity component in the ith direction (m � s�1)
~v Favre-filtered velocity component in the 2nd direction (m � s�1)
~w Favre-filtered velocity component in the 3rd direction (m � s�1)
Wk molecular weight of the kth species (kg �mol�1)
x spatial coordinate in the axial direction (m)
xi spatial coordinate in the ith direction (m)
~Yk Favre-filtered mass fraction of the kth species
~Z Favre-filtered mixture fraction
δij Kronecker delta function
λeff effective thermal conductivity (W �m�1 � K�1)
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μt sub-grid scale turbulent viscosity (Pa � s)
ν
0
ki reactant stoichiometric coefficient of the kth species in the ith reaction
ν
00
ki product stoichiometric coefficient of the kth species in the ith reaction
�ρ filtered density (kg �m�3)
σsgsi sub-grid scale viscous work in the ith direction (J �m�2 � s�1)
τ pseudo time (s)
~τij Favre-filtered stress tensor (Pa)
τsgsij sub-grid scale stress tensor (Pa)

Φsgs
k;j sub-grid scale species flux of the kth species in the jth direction (kg �m�2 � s�1)

equivalence ratio
~χj Favre-filtered mole fraction of the jth species

_ωC filtered net mass production rate of progress variable (kg �m�3 � s�1)
_ωk filtered net mass production rate of the kth species (kg �m�3 � s�1)

Funding

This work was funded partly by the Air Force Office of Scientific Research [Grant FA9550-18-
1-0216], partly by NASA Grant NNX15AU96A, and partly by the William R.T. Oakes Endowment
of the Georgia Institute of Technology.

ORCID

Suo Yang http://orcid.org/0000-0002-9924-2645

References

Barlow, R. S., and J. H. Frank. 1998. Effects of turbulence on species mass fractions in methane/air
jet flames. Symposium (International) on Combustion, 27, 1087–95. doi:10.1016/S0082-0784(98)
80510-9

Bilger, R. 1993. Conditional moment closure for turbulent reacting flow. Phys. Fluids 5:436–44.
doi:10.1063/1.858867.

Bussing, T. R., and E. M. Murman. 1988. Finite-volume method for the calculation of compressible
chemically reacting flows. AIAA J. 26:1070–78. doi:10.2514/3.10013.

Chen, T., S. Yang, A. C. Rousso, B. M. Goldberg, S. Wu, E. Kolemen, and Y. Ju. 2019. Time-resolved
electron temperature and species measurements and predictions of plasma-assisted reforming of
methane. AIAA Scitech 2019 Forum. San Diego, California: AIAA 2019–0465. doi:10.2514/6.2019-
0465

Esclapez, L., P. C. Ma, E. Mayhew, R. Xu, S. Stouffer, T. Lee, H. Wang, and M. Ihme. 2017. Fuel
effects on lean blow-out in a realistic gas turbine combustor. Combust. Flame 181:82–99.
doi:10.1016/j.combustflame.2017.02.035.

Gao, X., S. Yang, and W. Sun. 2016. A global pathway selection algorithm for the reduction of detailed
chemical kinetic mechanisms. Combust. Flame 167:238–47. doi:10.1016/j.combustflame.2016.02.007.

Gonzalez, E., A. Dasgupta, S. Arshad, and M. Oevermann 2017. Effect of the turbulence modeling in
large-eddy simulations of nonpremixed flames undergoing extinction and reignition. 55th AIAA
Aerospace Sciences Meeting. Grapevine, Texas, AIAA 2017–0604. doi:10.2514/6.2017-0604

Han, W., V. Raman, and Z. Chen. 2016. Les/pdf modeling of autoignition in a lifted turbulent
flame: Analysis of flame sensitivity to differential diffusion and scalar mixing time-scale.
Combust. Flame 171:69–86. doi:10.1016/j.combustflame.2016.05.027.

Hsieh, S.-Y., and V. Yang. 1997. A preconditioned flux-differencing scheme for chemically reacting
flows at all mach numbers. Int. J. Comput. Fluid Dyn. 8:31–49. doi:10.1080/10618569708940794.

COMBUSTION SCIENCE AND TECHNOLOGY 21

https://doi.org/10.1016/S0082-0784(98)80510-9
https://doi.org/10.1016/S0082-0784(98)80510-9
https://doi.org/10.1063/1.858867
https://doi.org/10.2514/3.10013
https://doi.org/10.2514/6.2019-0465
https://doi.org/10.2514/6.2019-0465
https://doi.org/10.1016/j.combustflame.2017.02.035
https://doi.org/10.1016/j.combustflame.2016.02.007
https://doi.org/10.2514/6.2017-0604
https://doi.org/10.1016/j.combustflame.2016.05.027
https://doi.org/10.1080/10618569708940794


Huo, H., and V. Yang. 2017. Large-eddy simulation of supercritical combustion: Model validation
against gaseous H2-O2 injector. J. Propul. Power 33:1272–84. doi:10.2514/1.B36368.

Ihme, M., and H. Pitsch. 2008. Prediction of extinction and reignition in nonpremixed turbulent
flames using a flamelet/progress variable model: 2. Application in LES of Sandia flames Dand E.
Combust. Flame 155:90–107. doi:10.1016/j.combustflame.2008.04.015.

Jones, W., and V. Prasad. 2010. Large eddy simulation of the Sandia flame series (D–F) using the
eulerian stochastic field method. Combust. Flame 157:1621–36. doi:10.1016/j.
combustflame.2010.05.010.

Ju, Y., J. K. Lefkowitz, C. B. Reuter, S. H. Won, X. Yang, S. Yang, W. Sun, Z. Jiang, and Q. Chen.
2016. Plasma assisted low temperature combustion. Plasma Chem. Plasma Process. 36:85–105.
doi:10.1007/s11090-015-9657-2.

Katta, V. R., and W. M. Roquemore. 2008. Calculation of multidimensional flames using large
chemical kinetics. AIAA J. 46:1640–50. doi:10.2514/1.33131.

Legier, J.-P., T. Poinsot, and D. Veynante 2000. Dynamically thickened flame les model for
premixed and non-premixed turbulent combustion. Proceedings of the Summer Program,
Center for Turbulence Research. Stanford, California, 157–68.

Lew, J. K., S. Yang, and M. E. Mueller. 2017. Evaluation of a strain-sensitive transport model in LES
of turbulent nonpremixed sooting flames. Bull. Am. Phys. Soc. Division of Fluid Dynamics
Meeting. Denver, Colorado, F2.008.

Li, J., Y. Xia, A. S. Morgans, and X. Han. 2017. Numerical prediction of combustion instability limit
cycle oscillations for a combustor with a long flame. Combust. Flame 185:28–43. doi:10.1016/j.
combustflame.2017.06.018.

Lysenko, D. A., I. S. Ertesvåg, and K. E. Rian. 2014. Numerical simulations of the Sandia flame
Dusing the eddy dissipation concept. Flow Turbul. Combust. 93:665–87. doi:10.1007/s10494-014-
9561-5.

Marzouk, O. A., and E. D. Huckaby. 2010. A comparative study of eight finite-rate chemistry
kinetics for CO/H2 combustion. Eng. Appl. Comput. Fluid Mech. 4:331–56. doi:10.1080/
19942060.2010.11015322.

Meng, H., and V. Yang. 2003. A unified treatment of general fluid thermodynamics and its
application to a preconditioning scheme. J. Comput. Phys. 189:277–304. doi:10.1016/S0021-
9991(03)00211-0.

Menon, S., and A. R. Kerstein. 2011. The linear-eddy model. In Echekki, T., and E. Mastorakos
(Eds.). Turbulent combustion modeling (pp. 221–247). Netherlands: Springer.

Moin, P., K. Squires, W. Cabot, and S. Lee. 1991. A dynamic subgrid-scale model for compressible
turbulence and scalar transport. Phys. Fluids 3:2746–57. doi:10.1063/1.858164.

Peters, N. 1984. Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog.
Energy Combust. Sci. 10:319–39. doi:10.1016/0360-1285(84)90114-X.

Pierce, C. D., and P. Moin. 2004. Progress-variable approach for large-eddy simulation of
non-premixed turbulent combustion. J. Fluid Mech. 504:73–97. doi:10.1017/S0022112004008213.

Pitsch, H., and H. Steiner. 2000a. Large-eddy simulation of a turbulent piloted methane/air diffu-
sion flame (Sandia flame D). Physics of Fluids (1994-present) 12:2541–54. doi:10.1063/1.1288493.

Pitsch, H., and H. Steiner. 2000b. Scalar mixing and dissipation rate in large-eddy simulations of
non-premixed turbulent combustion. Proc. Combust. Inst. 28:41–49. doi:10.1016/S0082-0784(00)
80193-9.

Pope, S. B. 1985. PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11:119–92.
doi:10.1016/0360-1285(85)90002-4.

Potturi, A., and J. R. Edwards 2013. Investigation of subgrid closure models for finite-rate scramjet
combustion. 43rd Fluid Dynamics Conference. San Diego, California, AIAA 2013–2461.
doi:10.2514/6.2013-2461

Raman, V., and H. Pitsch. 2007. A consistent les/filtered-density function formulation for the
simulation of turbulent flames with detailed chemistry. Proc. Combust. Inst. 31:1711–19.
doi:10.1016/j.proci.2006.07.152.

22 S. YANG ET AL.

https://doi.org/10.2514/1.B36368
https://doi.org/10.1016/j.combustflame.2008.04.015
https://doi.org/10.1016/j.combustflame.2010.05.010
https://doi.org/10.1016/j.combustflame.2010.05.010
https://doi.org/10.1007/s11090-015-9657-2
https://doi.org/10.2514/1.33131
https://doi.org/10.1016/j.combustflame.2017.06.018
https://doi.org/10.1016/j.combustflame.2017.06.018
https://doi.org/10.1007/s10494-014-9561-5
https://doi.org/10.1007/s10494-014-9561-5
https://doi.org/10.1080/19942060.2010.11015322
https://doi.org/10.1080/19942060.2010.11015322
https://doi.org/10.1016/S0021-9991(03)00211-0
https://doi.org/10.1016/S0021-9991(03)00211-0
https://doi.org/10.1063/1.858164
https://doi.org/10.1016/0360-1285(84)90114-X
https://doi.org/10.1017/S0022112004008213
https://doi.org/10.1063/1.1288493
https://doi.org/10.1016/S0082-0784(00)80193-9
https://doi.org/10.1016/S0082-0784(00)80193-9
https://doi.org/10.1016/0360-1285(85)90002-4
https://doi.org/10.2514/6.2013-2461
https://doi.org/10.1016/j.proci.2006.07.152


Rousso, A., S. Yang, J. Lefkowitz, W. Sun, and Y. Ju. 2017. Low temperature oxidation and pyrolysis
of n-heptane in nanosecond-pulsed plasma discharges. Proc. Combust. Inst. 36:4105–12.
doi:10.1016/j.proci.2016.08.084.

Smagorinsky, J. 1963. General circulation experiments with the primitive equations: I. The basic
experiment. Mon. Weather Rev. 91:99–164. doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.
CO;2.

Smith, G. P., D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg,
C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner Jr., et al. Gri-mech 3.0 [Online].
Available: http://www.me.berkeley.edu/gri_mech// [Accessed 2016].

Sun, W., X. Gou, H. A. El-Asrag, Z. Chen, and Y. Ju. 2015. Multi-timescale and correlated dynamic
adaptive chemistry modeling of ignition and flame propagation using a real jet fuel surrogate
model. Combust. Flame 162:1530–39. doi:10.1016/j.combustflame.2014.11.017.

Unnikrishnan, U., X. Wang, S. Yang, and V. Yang 2017. Subgrid scale modeling of the equation of
state for turbulent flows under supercritical conditions. 53rd AIAA/SAE/ASEE Joint Propulsion
Conference. Atlanta, Georgia, AIAA 2017–4855. doi:10.2514/6.2017-4855

Wang, H. 2016. Consistent flamelet modeling of differential molecular diffusion for turbulent
non-premixed flames. Phys. Fluids 28:035102. doi:10.1063/1.4942514.

Yang, S. 2017. Effects of detailed finite rate chemistry in turbulent combustion. Ph.D., Georgia
Institute of Technology.

Yang, S., J. K. Lew, and M. E. Mueller. 2019a. Large eddy simulation of soot evolution in turbulent
reacting flows: Presumed subfilter pdf model for soot–turbulence–chemistry interactions.
Combust. Flame 209:200–13. doi:10.1016/j.combustflame.2019.07.040.

Yang, S., R. Ranjan, V. Yang, S. Menon, and W. Sun. 2017b. Parallel on-the-fly adaptive kinetics in
direct numerical simulation of turbulent premixed flame. Proc. Combust. Inst. 36:2025–32.
doi:10.1016/j.proci.2016.07.021.

Yang, S., R. Ranjan, V. Yang, W. Sun, and S. Menon. 2017c. Sensitivity of predictions to chemical
kinetics models in a temporally evolving turbulent non-premixed flame. Combust. Flame
183:224–41. doi:10.1016/j.combustflame.2017.05.016.

Yang, S., S. Nagaraja, W. Sun, and V. Yang 2015. A detailed comparison of thermal and nanosecond
plasma assisted ignition of hydrogen-air mixtures. 53rd AIAA Aerospace Sciences Meeting.
Kissimmee, Florida, AIAA 2015–1615. doi:10.2514/6.2015-1615

Yang, S., S. Nagaraja, W. Sun, and V. Yang. 2017a. Multiscale modeling and general theory of
non-equilibrium plasma-assisted ignition and combustion. J. Phys. D: Appl. Phys. 50:433001.
doi:10.1088/1361-6463/aa87ee.

Yang, S., V. Yang, W. Sun, S. Nagaraja, W. Sun, Y. Ju, and X. Gou 2016b. Parallel on-the-fly
adaptive kinetics for non-equilibrium plasma discharges of C2H4/O2/Ar mixture. 54th AIAA
Aerospace Sciences Meeting. San Diego, California, AIAA 2016–195. doi:10.2514/6.2016-0195

Yang, S., X. Gao, V. Yang, W. Sun, S. Nagaraja, J. K. Lefkowitz, and Y. Ju. 2016a. Nanosecond
pulsed plasma activated C2H4/O2/Ar mixtures in a flow reactor. J. Propul. Power 32:1240–52.
doi:10.2514/1.B36060.

Yang, S., X. Wang, H. Huo, W. Sun, and V. Yang. 2019b. An efficient finite-rate chemistry model
for a preconditioned compressible flow solver and its comparison with the flamelet/progress--
variable model. Combust. Flame 210:172–82. doi:10.1016/j.combustflame.2019.08.035.

Zhang, Y., S. Yang, V. Yang, and W. Sun 2017. Effects of non-equilibrium plasma discharge on
ignition and ntc chemistry of DME/O2/Ar mixtures: A numerical investigation. 53rd AIAA/SAE/
ASEE Joint Propulsion Conference. Atlanta, Georgia, AIAA 2017–4773. doi:10.2514/6.2017-4773

Zhao, H., J. Fu, F. M. Haas, and Y. Ju. 2017. Effect of prompt dissociation of formyl radical on 1, 3,
5-trioxane and CH2 Olaminar flame speeds with CO2 dilution at elevated pressure. Combust.
Flame 183:253–60. doi:10.1016/j.combustflame.2017.05.005.

Zong, N., and V. Yang. 2007. An efficient preconditioning scheme for real-fluid mixtures using
primitive pressure–temperature variables. Int. J. Comput. Fluid Dyn. 21:217–30. doi:10.1080/
10618560701584373.

COMBUSTION SCIENCE AND TECHNOLOGY 23

https://doi.org/10.1016/j.proci.2016.08.084
https://doi.org/10.1175/1520-0493(1963)091%3C0099:GCEWTP%3E2.3.CO;2
https://doi.org/10.1175/1520-0493(1963)091%3C0099:GCEWTP%3E2.3.CO;2
http://www.me.berkeley.edu/gri_mech//
https://doi.org/10.1016/j.combustflame.2014.11.017
https://doi.org/10.2514/6.2017-4855
https://doi.org/10.1063/1.4942514
https://doi.org/10.1016/j.combustflame.2019.07.040
https://doi.org/10.1016/j.proci.2016.07.021
https://doi.org/10.1016/j.combustflame.2017.05.016
https://doi.org/10.2514/6.2015-1615
https://doi.org/10.1088/1361-6463/aa87ee
https://doi.org/10.2514/6.2016-0195
https://doi.org/10.2514/1.B36060
https://doi.org/10.1016/j.combustflame.2019.08.035
https://doi.org/10.2514/6.2017-4773
https://doi.org/10.1016/j.combustflame.2017.05.005
https://doi.org/10.1080/10618560701584373
https://doi.org/10.1080/10618560701584373

	Abstract
	Introduction
	Theoretical formulation
	Finite-Rate Chemistry (FRC) model
	Flamelet/Progress Variable (FPV) model

	Results and discussion
	Spatial distribution of reactivity
	Axial profiles
	Radial profiles
	Conditional statistics

	Conclusions and recommendations for future work
	Nomenclature
	Funding
	References

